Science Center Research Park 3711 Market St. Philadelphia, PA

The Pennsylvania State University Department of Architectural Engineering Senior Thesis 2009-2010

Prepared by: Zachary Yarnall

November 30, 2009

[TECHNICAL REPORT 3]

Lateral System Analysis

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
INTRODUCTION	5
CODE	5
CODE / REFERENCES	5
Drift Criteria	6
Load Combinations	6
Wind Load Cases	7
MATERIAL	8
CONCRETE	
STRUCTURAL STEEL	
GRAVITY AND DESIGN LOADS	9
DEAD LOADS	9
LIVE LOADS	9
SNOW LOADS	
LATERAL LOADS	
WIND LOADS	
SEISMIC LOADS	
EXISTING STRUCTURAL SYSTEM	
FOUNDATION	
FLOOR SYSTEM	
LATERAL SYSTEM	
LATERAL SYSTEM ANALYSIS	
Load Path	20
Relative Stiffness	21
Wind Drifts	25
Seismic Drifts	27
Torsion	29
Overturning Moment	
CONCLUSION	

Technical Report 3	3711 Market Street
Zachary Yarnall	Philadelphia, PA
APPENDIX A- EXISTING TYPICAL BAY AND DESIGN VALUES	
APPENDIX B-WIND LOADS	
APPENDIX C-SEISMIC LOADS	43
APPENDIX D-OVERTURNING AND SPOT CHECKS	

EXECUTIVE SUMMARY

The Science Center Research Park is a 401,032 GSF mixed-use building and is approximately 144 feet tall. It currently has the largest green roof in the city of Philadelphia. The building includes offices, wet labs, retail space, and a 500 car parking garage. The structure is made up of steel construction, and composite deck. Lateral support is provided by steel braced frames using HSS steel shapes for cross-bracing. The ground floor is a reinforced slab on grade with grade beams, and drilled caissons that support the buildings columns.

Technical report 3 is a report is an analysis of the existing lateral system of the Science Center Research Parks building. The purpose is to gain an understanding of how lateral loads are distributed, and to verify that a load path exists. This report uses current standards and the governing standards to analyze the existing Lateral system. It includes modeling using ETABS, and checks on strength, drifts and overturning moments.

Topics covered in technical report 3, but not limited to:

- Gravity and Lateral Loads
- > Load Paths
- > Computer Analysis
- > Drift
- > Overturning Issues
- > Lateral Spot Checks

In conclusion, the controlling load combination was found to be: 1.2(Dead) + 1.6(Wind) + 1.0(Live) + 0.5(Roof Live)

The controlling wind load case was found to be load case 1 which includes 100% of the North-South or East-West wind loads. Also, all the drifts do to lateral forces were found to be acceptable and were less than the limitations for wind and seismic drifts found in ASCE 7-05.

The overturning moments were found to be offset by the moment cause by the building self weight. The critical shear forces were used in ETABS to calculate the overturning moments for the building. All the member spot checks were found to be acceptable. Lateral member spot checks were done and it was found that the design of the members was acceptable.

At the end of this report is an appendix that contains all the calculations for the loads stated above.

INTRODUCTION

The Science Center Research Park is an addition to the growing research/science development in the University City area. "The Science Center is the nation's preeminent destination for early-stage life science companies across the globe", said Pradip Banerjee. The building includes offices, wet labs, retail space, and a 500 car parking garage. It is covered by glass curtain wall, stone, and a brick veneer along the Market Street facade.

Technical Report 3 analyzes the existing lateral system for the Science Center Research Park building in order to gain a better understanding of how wind and seismic loads are distributed. Conclusion will be made on the validity of structural members designed for the lateral system.

CODE

CODE / REFERENCES

- ASCE 7-05 Minimum Design Loads for Buildings and Other Structures
- IBC 2006 International Building Code
- ACI 318-08 Building Code Requirements for Structural Concrete
- AISC 13th Edition Steel Construction Manual

Note: The following codes and references were used in the original design and in this report. All references are up-to-date building design standards. Technical Report 3

Zachary Yarnall

DRIFT CRITERIA

Allowable Building Drift = H/400

Inner-Story Drift

Wind = h/400 to h/600

Seismic = 0.015h

LOAD COMBINATIONS

The following load combinations were used in the combination of factored gravity and lateral loads. These combinations were used for the 3D model analysis done using ETABS. The four different wind load cases stated below were also used when considering these load combinations.

- 1. 1.4(Dead)
- 2. 1.2(Dead) + 1.6(Live) + 0.5(Roof Live)
- 3. 1.2(Dead) + 1.6(Roof Live) + (1.0(Live) + 0.8(Wind))
- 4. 1.2(Dead) + 1.6(Wind) 1.0(Live) + 0.5(Roof Live)
- 5. 1.2(Dead) + 1.0(Seismic) +1.6(Wind)
- 6. 0.9(Dead) + 1.6(1.6(Wind)
- 7. 0.9(Dead) +1.0(Seismic)

WIND LOAD CASES

<u>Case 1</u>: 100 % of the wind forces in the north-south or east-west direction

<u>Case 2</u>: 75 % of the north-south or east-west direction applied with torsion

<u>Case 3</u>: 75 % of the north-south and east-west direction applied simultaneously

<u>Case 3</u>: 56.3 % of the north-south and east-west direction applied simultaneously with torsion

Note: The above criteria were taken from ASCE 7-05.

MATERIAL

CONCRETE

Slabs on grade	f' _c = 4000 psi
Slab on steel deck	f' _c = 4000 psi
Drilled caissons	f' _c = 3000 psi
Foundation walls, piers &grade beams	f' _c = 4000 psi
Steel column encasement	f' _c = 3000 psi

STRUCTURAL STEEL

W – Shapes	ASTM A992
Bars, rods and plates	ASTM A36 (UNO)
All other structural shapes	ASTM A36
Pipes	ASTM A53, Grade B
Cold-formed hollow structural sections (tubing)	ASTM A500, Grade B
High strength bolts	ASTM A325
Deformed bar anchors	ASTM A706 Low Carbon
Anchor rods	ASTM A36
Shear connectors (headed)	ASTM A108,
	Grade 1010 to 1020

GRAVITY AND DESIGN LOADS

DEAD LOADS

Concrete	150 pcf
Light Weight Concrete	115 pcf
Partitions	20 psf
M.E.P.	5 psf
Finishes and Misc.	3 psf
Roof Deck	2.6 psf
Rigid Insulation	4 psf

LIVE LOADS

Corridors, Lobbies & Exits	100 psf
Labs / Offices	100 psf
Garage	40 psf
Mechanical Equip. Rooms	150 psf
Roof	30 psf

Note: The above loads were used in the original design and in this report.

SNOW LOADS

Snow load were calculated to determine whether the roof design is sufficient to carry the applied snow load. Table 1 contains all the design values required to calculate the flat roof snow load. When the applied snow load was compared to the existing designed snow load it was noticeable that designers had used a larger value. All the design criteria is the same used by the designers, but the designers used a more conservative value for the snow load. Snow drift was not calculated, but it vary depending on the different roof levels of the building.

TABLE 1 – Snow load design criteria

LATERAL LOADS

WIND LOADS

Wind loads were determined using ASCE 7-05 Section 6.5 which describes Method 2. The detailed analysis of the wind loads can be found in appendix B. Below are tables including wind factors and wind loads calculated for north-south and east-west elevations.

		Height About Cround	'wound		Wind Pressures		
	Level	(ft)	Kz qz		N-S (psf)	E-W (psf)	
	Pent House	147.5	1.10	21.41	15.00	15.19	
	Roof Level	140.17	1.09	21.10	14.79	14.97	
	T.O. Parapet	131.17	1.07	20.70	14.51	14.69	
	10	125.5	1.05	20.44	14.33	14.51	
	9	110.83	1.02	19.73	13.83	14.00	
	8	96.17	0.98	18.95	13.28	13.45	
windward	7	81.5	0.93	18.07	12.67	12.82	
	6	66.83	0.88	17.08	11.97	12.12	
	5	53.5	0.83	16.02	11.23	11.37	
	4	43.5	0.78	15.10	10.59	10.72	
	3	33.5	0.72	14.02	9.82	9.95	
	2	23.5	0.65	12.67	8.88	8.99	
	1	13.5	0.57	11.05	7.74	7.84	
	Leeward	All	1.1	21.41	-9.38	-7.98	

TABLE 2 – Wind Pressure at each level

		Floor	ь/ ว	h /a	Wind Forces			
Level	Ground (ft)	Floor Height (ft)	n/Z above	n/2 below	Load	(kips)	Shea	r (kips)
	Ground (it)	fieight (it)	above	Delow	N-S	E-W	N-S	E-W
Pent House	147.5	0						
Roof Level	140.17	7.33	7.33	7.33	57	132	57	132
T.O. Parapet	131.17	9						
10	125.5	5.67	5.67	7.33	49	103	107	236
9	110.83	14.67	7.33	7.33	54	126	161	361
8	96.17	14.67	7.33	7.33	52	121	213	483
7	81.5	14.67	7.33	7.33	50	116	263	599
6	66.83	14.67	7.33	6.67	45	109	308	708
5	53.5	13.33	6.67	5	36	92	344	800
4	43.5	10	5	5	29	67	372	867
3	33.5	10	5	5	27	63	399	930
2	23.5	10	5	5	25	58	424	988
1	13.5	10	5	6.75	25	55	449	1043
Total	147.5				449	1024	449	1024

TABLE 3 – Wind Loads: Shear and Moment at each level

Philadelphia, PA

Philadelphia, PA

SEISMIC LOADS

Seismic loads were determined using ASCE 7-05 chapters 11 and 12. The detailed analysis of the seismic loads can be found in appendix C. Building weight was calculated for each floor of the typical steel constructed building. The building weight includes the dead loads that are listed in the tables below.

Floor	Floor Area (ft ²)	Approx. Floor Dead Load (t _{slab} *150 pcf)	Floor Weight (Ibs)	h/2 above (ft)	h/2 below (ft)	Column weight/length total (plf)	Column weight= height* weight/length (lbs)
Ground						11445	
1st	33,833	93.75	3171843	5	6.75	11498	134743.75
2nd	50,705	93.75	4753593	5	5	11566	115320.00
3rd	50,705	93.75	4753593	5	5	7385	94755.00
4th	50,705	93.75	4753593	5	5	7385	73850.00
5th	40,433	93.75	3790593	6.67	5	7205	84958.33
6th	34,439	93.75	3228656	7.33	6.67	4797	83211.33
7th	34,439	93.75	3228656	7.33	7.33	4797	70356.00
8th	30,439	93.75	2853656	7.33	7.33	2960	56884.67
9th	30,439	93.75	2853656	7.33	7.33	2960	43413.33
Pent house	6,437	93.75	603468	7.33	7.33	728	27045.33
Roof pent							
house level	21,509	93.75	2016468		7.33	2960	21706.67
Roof	6,437	93.75	603468		7.33	728	5338.67
Total			36007781				806244

TABLE 4 – Building Weight Tabulation

Floor	Approx. Beam weight (Ibs)	Curtainwall (estimated length along perimeter) (ft)	Curtainwall height (ft)	Curtainwall weight (height*length* 15 psf)	Braced frame weight (lbs)	
Ground						
1st	257591.00	913.5	10	137025	11064	
2nd	257591.00	913.5	10	137025	7772	
3rd	257591.00	913.5	10	137025	7239	
4th	257591.00	913.5	10	137025	8639	
5th	240266.00	913.5	13.33	182654.325	8639	
6th	178765.00	913.5	14.67	201015.675	7772	
7th	141120	850.5	14.67	187152.525	7041	
8th	141120	850.5	14.67	187152.525	6773	
9th	141120	819	14.67	180220.95	6439	
Pent house	30240.00	378	14.67	83178.9	13207	
Roof _{pent}						
house level	7180.00					
Roof	92547.00					
Total	1910175			1569474.9	84585	
Total Building Weight 40378.26 kips						

TABLE 4 – Building Weight Tabulation (continued)

Building forces including story and base shears were calculated after the tabulation of building weights. These forces are shown below in table 5.

Level	Story Weight w _x (Kips)	Height h _x (ft)	w _x h _x ^k	Lateral Force F _x (Kips)	Story Shear V _x (Kips)	Moment M _x (ft-k)
1st	3712.27	13.5	50115.61125	6.05	286.42	81.68
2nd	5271.30	23.5	123875.5911	14.95	280.37	351.44
3rd	5250.20	33.5	175881.8256	21.23	265.41	711.31
4th	5230.70	43.5	227535.3956	27.47	244.18	1194.90
5th	4307.11	53.5	230430.4603	27.82	216.71	1488.28
6th	3699.42	66.83	247232.2559	29.85	188.89	1994.66
7th	3634.33	81.5	296197.5507	35.76	159.05	2914.28
8th	3245.59	96.17	312128.0481	37.68	123.29	3623.80
9th	3224.85	110.83	357410.0738	43.15	85.61	4782.07
Penthouse	757.14	125.5	95021.06791	11.47	11.47	1439.65
$Roof_{penthouse}$						
level	2045.36	125.5	256692.1048	30.99	30.99	3889.09
Roof	701.35	140.17	98308.84858	11.87	0	1663.56
Total					1892	

TABLE 5 – Seismic Load Tabulation

EXISTING STRUCTURAL SYSTEM

FOUNDATION

The foundation system is composed of cast-in-place reinforce concrete grade beams and piers. The deep foundation consists of drilled caissons that range from 3 to 5 feet in diameter, and 20 to 30 feet below grade. These caissons can carry loads up to 1900 kips depending on the size. The general thickness of the slab on grade is either 4 or 6 inches depending on indication on plans, but is also 12 inches thick in some areas. The columns are also cast-in-place in some areas of the ground floor, but transfer to steel columns. All the concrete in the building has a compressive strength of 4000 psi; except for the caissons and steel column encasements have a compressive strength of 3000 psi.

FLOOR SYSTEM

The floor system is a composite steel slab system on steel beams with a typical bay size of 31'6" x 31'6". The typical composite deck is composed of 6 inches of normal weight concrete and 1.5" – 18 gauge composite steel decking with ¾" studs. The floor is supported typically by W 18 x 40 beams and W 24 x 84 girders, but there are large amount of other W - shapes used. The roof consists of 1.5" – 18 gauge steel roof deck supported typically by W 16 x 26 beams and W 24 x 55 girders. Refer to typical bay layout and overall plan such as shown on page 20.

LATERAL SYSTEM

The lateral system is composed of braced frames strategically placed on each floor. The braced frame can be located in the walls of the main elevator and stairwell core in the center of the building, in some exterior walls, and in the exterior walls of the penthouse. The braces are hollow structural steel members. Typical brace members are HSS 8 x 8's and HSS 6 x 6's were used, but several different sizes were used. The shear at the end of the beams is typically 10 kips, unless indicated otherwise on the plans. Also, column splices transmit compression forces in end bearing with a minimum of 15 kips of shear. Two bays of the braced frames in the center core connect into the buildings foundation transfer the shear load. Refer to typical braced frame layout shown on page 22.

LATERAL SYSTEM ANALYSIS

Graphic of ETABS Model

A computer model of the Science Center Research Park building was used to analyze the existing lateral system and the loads applied. An ETABS model was created including only the lateral elements and diaphragms. The reason is simplicity and the reductions of possible errors. The seismic loads were applied to the center of pressure. The ETABS model was used to calculate relative stiffness, wind and seismic drifts, the center of mass and rigidity, and

overturning moments. The lateral loads were assumed to be transferred through the diaphragms into the lateral frames, and down to the base of the building.

Graphic above: Lateral System Layout

Technical Report 3 Zachary Yarnall 3711 Market Street Philadelphia, PA

LOAD PATH

The lateral loads were assumed to be transferred through the diaphragms into the lateral frames, and down to the base of the building where the load is absorbed by the soils.

Latera

Lateral Loads in the Y-direction (North-South)

Lateral Loads in the X-directions (East-West)

Relative Stiffness

The relative stiffness for each frame per floor was tabulated using the ETABS model. A 1000 kip force was applied to the center of mass at the top level of the building. In order to calculate the relative stiffness in each frame, section cuts were made using the ETABS model to determine the shear forces. The tables below include the shear forces and tabulation of relative stiffness. It was confirmed that the total of the shear forces at each level roughly equal the story shear of 1000 kips. The relative stiffness was determined by taking the percentage of the 1000 kips that was resisted by the frame examined.

11th Story								
Grid	X Force	% X	Grid Y Force % Y					
F	-942	-0.942	1	0	0			
Α	0	0	3	0	0			
			4	-496	-0.496			
			5	-504	-0.504			
			6	0	0			
			10	0	0			
Total	-942			-1000				

	9th Story								
Grid	X Force	% X	Grid	Y Force	% Y				
F	-615	-0.615	1	-5	-0.005				
А	-369	-0.369	3	-161	-0.161				
			4	-425	-0.425				
			5	-246	-0.246				
			6	-162	-0.162				
			10	0	0				
Total	-984			-999					

	7th Story								
Grid	X Force	% X	Grid	Y Force	% Y				
F	-649	-0.649	1	-7	-0.007				
А	-352	-0.352	3	-143	-0.143				
			4	-469	-0.469				
			5	-230	-0.23				
			6	-150	-0.15				
			10	0	0				
Total	-1001			-999					

5th Story								
Grid	X Force	% X	Grid	Y Force	% Y			
F	-642	-0.642	1	-265	-0.265			
А	-361	-0.361	3	-69	-0.069			
			4	-172	-0.172			
			5	-232	-0.232			
			6	-67	-0.067			
			10	-195	-0.195			
Total	-1003			-1000				

10th Story							
Grid	X Force	% X	Grid	Y Force	% Y		
F	-651	-0.651	1	-6	-0.006		
А	-418	-0.418	3	-153	-0.153		
			4	-416	-0.416		
			5	-271	-0.271		
			6	-154	-0.154		
			10	0	0		
Total	-1069	-1000					

8th Story							
Grid	X Force	% X	Grid	Y Force	% Y		
F	-635	-0.635	1	-8	-0.008		
Α	-366	-0.366	3	-132	-0.132		
			4	-511	-0.511		
			5	-209	-0.209		
			6	-139	-0.139		
			10	0	0		
Total	-1001 -999						

	6th Story								
Grid	X Force	% X	Grid	Y Force	% Y				
F	-666	-0.666	1	-308	-0.308				
А	-335	-0.335	3	-30	-0.03				
			4	-157	-0.157				
			5	-250	-0.25				
			6	-25	-0.025				
			10	-231	-0.231				
Total	-1001			-1001					

	4th Story								
Grid	X Force	% X	Grid	Y Force	% Y				
F	-660	-0.66	1	-281	-0.281				
А	-335	-0.335	3	-4	-0.004				
			4	-215	-0.215				
			5	-244	-0.244				
			6	-3	-0.003				
			10	-252	-0.252				
Total	-995			-999					

		3th S	Story		
Grid	X Force	% X	Grid	Y Force	% Y
F	-648	-0.648	1	-246	-0.246
А	-342	-0.342	3	-6	-0.006
			4	-205	-0.205
			5	-325	-0.325
			6	-2	-0.002
			10	-214	-0.214
Total	-990			-998	
		1ST S	Story		
Grid	X Force	% X	Grid	Y Force	% Y
F	-707	-0.707	1	-182	-0.182
А	-294	-0.294	3	-2	-0.002
			4	-397	-0.397
			5	-228	-0.228
			6	2	0.002
			10	-191	-0.191
Total	-1001			-998	

Figures 6 – 16: Relative Stiffness for frames resisting 1000 kips in the X and Y directions

Below is the output from ETABS for the center of mass and the center of rigidity for each level of the building. The coordinates do not change much due to the fact the building does not change radically in shape by level, and the upper stories are located in the center of the building.

Center of Mass			Center of Rigidity		
Story	XCM (ft) YCM (ft)		Story	XCR (ft)	YCR (ft)
STORY11	168.08	93.71	STORY11	164.71	57.94
STORY10	168.07	92.22	STORY10	165.49	90.07
STORY9	168.11	92.44	STORY9	164.03	88.80
STORY8	163.58	83.40	STORY8	161.76	88.46
STORY7	163.60	83.42	STORY7	157.67	90.13
STORY6	133.04	96.51	STORY6	151.74	99.56
STORY5	132.98	96.52	STORY5	148.31	97.27
STORY4	132.92	96.49	STORY4	145.42	94.14
STORY3	132.94	96.48	STORY3	147.28	90.84
STORY2	133.02	96.47	STORY2	151.25	85.39
STORY1	187.25	120.67	STORY1	190.59	72.33

Figures 17 & 18: Center of mass and Center of Rigidity

3711 Market Street

Philadelphia, PA

Story	B _x (in.)	e _x (in.)	B _y (in.)	e _y (in.)
1	3150	472.50	2268	340.20
2	3150	472.50	2268	340.20
3	3150	472.50	2268	340.20
4	3150	472.50	2268	340.20
5	3150	472.50	2268	340.20
6	3150	472.50	2268	340.20
7	2457	368.55	2268	340.20
8	2457	368.55	2268	340.20
9	2268	340.20	2079	311.85
10	2268	340.20	2079	311.85
11	1134	170.10	1134	170.10

CASE 2 NORTH-SOUTH POS e								
Story	F _x	Fy	xccor	yccor				
11	0	99	2187.1	1134				
10	0	77.25	2356.2	1228.5				
9	0	94.5	2356.2	1228.5				
8	0	90.75	2290.1	1134				
7	0	87	2290.1	1134				
6	0	81.75	2047.5	1134				
5	0	69	2047.5	1134				
4	0	50.25	2047.5	1134				
3	0	47.25	2047.5	1134				
2	0	43.5	2047.5	1134				
1	0	41.25	2583.0	1417.5				

CASE 2 EAST-WEST POS e								
Story	F _x	Fy	xccor	yccor				
11	42.75	0	2017	1304.1				
10	36.75	0	2016	1540.4				
9	40.5	0	2016	1540.4				
8	39	0	1921.5	1474.2				
7	37.5	0	1921.5	1474.2				
6	33.75	0	1575	1474.2				
5	27	0	1575	1474.2				
4	21.75	0	1575	1474.2				
3	20.25	0	1575	1474.2				
2	18.75	0	1575	1474.2				
1	18.75	0	2110.5	1757.7				

Figures 19 – 23: the effective coordinates for wind case 2

CASE 2 NORTH-SOUTH NEG e								
Story	F _x	Fy	xccor	yccor				
11	0	99	1846.9	1134				
10	0	77.25	1675.8	1228.5				
9	0	94.5	1675.8	1228.5				
8	0	90.75	1553.0	1134				
7	0	87	1553.0	1134				
6	0	81.75	1102.5	1134				
5	0	69	1102.5	1134				
4	0	50.25	1102.5	1134				
3	0	47.25	1102.5	1134				
2	0	43.5	1102.5	1134				
1	0	41.25	1638.0	1417.5				

CASE 2 EAST-WEST NEG e								
Story	F _x	F _x Fy xccor ycco						
11	42.75	0	2017	963.9				
10	36.75	0	2016	28.4				
9	40.5	0	2016	916.7				
8	39	0	1921.5	793.8				
7	37.5	0	1921.5	793.8				
6	33.75	0	1575	793.8				
5	27	0	1575	793.8				
4	21.75	0	1575	793.8				
3	20.25	0	1575	793.8				
2	18.75	0	1575	793.8				
1	18.75	0	2110.5	1757.7				

CASE 4

Story	B _x (in.)	e _x (in.)	B _y (in.)	e _v (in.)
1	3150	472.50	2268	340.20
2	3150	472.50	2268	340.20
3	3150	472.50	2268	340.20
4	3150	472.50	2268	340.20
5	3150	472.50	2268	340.20
6	3150	472.50	2268	340.20
7	2457	368.55	2268	340.20
8	2457	368.55	2268	340.20
9	2268	340.20	2079	311.85
10	2268	340.20	2079	311.85
11	1134	170.10	1134	170.10

CASE 4 NORTH-SOUTH e _x pos e _y pos									
Story	F _x	F _x Fy xccor yccor							
11	32.09	74.32	2187.10	1304.10					
10	27.59	57.99	2356.20	1540.40					
9	30.40	70.94	2356.20	1540.40					
8	29.28	68.12	2290.10	1474.20					
7	28.15	65.31	2290.10	1474.20					
6	25.34	61.37	2047.50	1474.20					
5	20.27	51.80	2047.50	1474.20					
4	16.33	37.72	2047.50	1474.20					
3	15.20	35.47	2047.50	1474.20					
2	14.08	32.65	2047.50	1474.20					
1	14.08	30.97	2583.00	1757.70					

CASE 4 EAST-WEST e _x pos e _y neg										
Story	F _x	F _x Fy xccor yccor								
11	32.09	74.32	2187.10	963.90						
10	27.59	57.99	2356.20	28.40						
9	30.40	70.94	2356.20	916.70						
8	29.28	68.12	2290.10	793.80						
7	28.15	65.31	2290.10	793.80						
6	25.34	61.37	2047.50	793.80						
5	20.27	51.80	2047.50	793.80						
4	16.33	37.72	2047.50	793.80						
3	15.20	35.47	2047.50	793.80						
2	14.08	32.65	2047.50	793.80						
1	14.08	30.97	2583.00	1757.70						

Figures 24 – 28: the effective coordinates for wind case 4

CASE 4 NORTH-SOUTH e _x neg e _y neg									
Story	F _x	F _x Fy xccor yccor							
11	32.09	74.32	1846.90	963.90					
10	27.59	57.99	1675.80	28.40					
9	30.40	70.94	1675.80	916.70					
8	29.28	68.12	1553.00	793.80					
7	28.15	65.31	1553.00	793.80					
6	25.34	61.37	1102.50	793.80					
5	20.27	51.80	1102.50	793.80					
4	16.33	37.72	1102.50	793.80					
3	15.20	35.47	1102.50	793.80					
2	14.08	32.65	1102.50	793.80					
1	14.08	30.97	1638.00	1757.70					

CASE 4 EAST-WEST e _x neg e _y pos									
Story	F _x	F _x Fy xccor yccor							
11	32.09	74.32	1846.90	1304.10					
10	27.59	57.99	1675.80	1540.40					
9	30.40	70.94	1675.80	1540.40					
8	29.28	68.12	1553.00	1474.20					
7	28.15	65.31	1553.00	1474.20					
6	25.34	61.37	1102.50	1474.20					
5	20.27	51.80	1102.50	1474.20					
4	16.33	37.72	1102.50	1474.20					
3	15.20	35.47	1102.50	1474.20					
2	14.08	32.65	1102.50	1474.20					
1	14.08	30.97	1638.00	1757.70					

Philadelphia, PA

WIND DRIFTS

Wind loads determined in technical report 1 were used in the ETABS model to determine the story drifts. The load case that controlled for wind was load case 1. This load case is 100% of the wind load is applied in the North-South or East-West direction. The controlling load combination for story drift in both directions was load combination 4:

1.2(Dead) + 1.6(Wind) + 1.0(Live) + 0.5(Roof Live)

The story and total drifts were checked with accordance to ASCE 7-05 to determine whether or not the deflections were acceptable. The drift limit using the story height can be calculated using this equation: $\Delta_{wind} = H/400$ (from ASCE 7-05)

Torsion was taken into account when adjusting the coordinates to the eccentricity found when looking at wind load cases 2 and 4. The results for wind drift in the X and Ydirections were tabulated after running the ETABS model for unfactored wind loads. Below are the wind drifts which all checked out to be acceptable when compared to the drift limitation.

	Controlling Wind Drift: North-South Direction								
Story	Story Height (ft)	Story Drift (in)	All	Allowable Story Drift ∆wind = H/400 (in)		Total Drift (in)	Allowable Total Drift Δwind = H/400 (in)		
11	140.17	0.00461	<	0.35043	acceptable	0.03944	<	1.97125	acceptable
10	125.5	0.00425	۲	0.31375	acceptable	0.03483	۲	1.62083	acceptable
9	110.83	0.00470	<	0.27708	acceptable	0.03058	<	1.30708	acceptable
8	96.17	0.00480	<	0.24043	acceptable	0.02588	<	1.03000	acceptable
7	81.5	0.00477	<	0.20375	acceptable	0.02108	<	0.78958	acceptable
6	66.83	0.00301	<	0.16708	acceptable	0.01632	<	0.58583	acceptable
5	53.5	0.00286	<	0.13375	acceptable	0.01331	<	0.41875	acceptable
4	43.5	0.00307	<	0.10875	acceptable	0.01045	<	0.28500	acceptable
3	33.5	0.00267	<	0.08375	acceptable	0.00738	<	0.17625	acceptable
2	23.5	0.00211	<	0.05875	acceptable	0.00471	<	0.09250	acceptable
1	13.5	0.00260	<	0.03375	acceptable	0.00260	<	0.03375	acceptable

Controlling Wind Drift: East-West Direction									
Story	Story Height (ft)	Story Drift (in)	Alle	Allowable Story Drift ∆wind = H/400 (in)		Total Drift (in)	Allowable Total Drift ∆wind = H/400 (in)		
11	140.17	0.00497	<	0.35043	acceptable	0.01559	<	1.97125	acceptable
10	125.5	0.00094	(0.31375	acceptable	0.01062	<	1.62083	acceptable
9	110.83	0.00103	<	0.27708	acceptable	0.00968	<	1.30708	acceptable
8	96.17	0.00109	(0.24043	acceptable	0.00865	<	1.03000	acceptable
7	81.5	0.00111	<	0.20375	acceptable	0.00756	<	0.78958	acceptable
6	66.83	0.00101	(0.16708	acceptable	0.00645	<	0.58583	acceptable
5	53.5	0.00106	<	0.13375	acceptable	0.00544	<	0.41875	acceptable
4	43.5	0.00114	(0.10875	acceptable	0.00438	<	0.28500	acceptable
3	33.5	0.00111	(0.08375	acceptable	0.00324	<	0.17625	acceptable
2	23.5	0.00099	(0.05875	acceptable	0.00213	<	0.09250	acceptable
1	13.5	0.00114	<	0.03375	acceptable	0.00114	<	0.03375	acceptable

Figures 20 & 30: Allowable wind drifts in the North-South and East-West Directions

SEISMIC DRIFTS

Seismic loads determined in technical report 1 were used in the ETABS model to determine the story drifts. Seismic drift protects against building failure/collapse unlike wind drift which is a serviceability requirement. The drift limitation for seismic drift can be calculated using this equation: $\Delta_{seismic} = 0.015h_{sx}$ (from ASCE 7-05)

Below are the seismic drifts which all checked out to be acceptable when compared to the drift limitation.

Controlling Seismic Drift: North-South Direction									
Story	Story Height (ft)	Story Drift (in)	Alle	Allowable Story Drift ∆wind = H/400 (in)		Total Drift (in)	Allowable Total Drift ∆wind = H/400 (in)		
11	140.17	0.00051	<	0.35043	acceptable	0.00125	<	1.97125	acceptable
10	125.5	0.00011	<	0.31375	acceptable	0.00074	<	1.62083	acceptable
9	110.83	0.00012	<	0.27708	acceptable	0.00063	<	1.30708	acceptable
8	96.17	0.00013	(0.24043	acceptable	0.00051	<	1.03000	acceptable
7	81.5	0.00016	<	0.20375	acceptable	0.00038	<	0.78958	acceptable
6	66.83	0.00003	<	0.16708	acceptable	0.00022	<	0.58583	acceptable
5	53.5	0.00002	<	0.13375	acceptable	0.00019	<	0.41875	acceptable
4	43.5	0.00001	(0.10875	acceptable	0.00017	<	0.28500	acceptable
3	33.5	0.00001	<	0.08375	acceptable	0.00016	<	0.17625	acceptable
2	23.5	0.00005	(0.05875	acceptable	0.00015	<	0.09250	acceptable
1	13.5	0.00010	<	0.03375	acceptable	0.00010	<	0.03375	acceptable

Controlling Seismic Drift: East-West Direction									
Story	Story Height (ft)	Story Drift (in)	All	Allowable Story Drift ∆wind = H/400 (in)		Total Drift (in)	Allowable Total Drift ∆wind = H/400 (in)		
11	140.17	0.00114	<	0.35043	acceptable	0.00540	<	1.97125	acceptable
10	125.5	0.00035	<	0.31375	acceptable	0.00426	<	1.62083	acceptable
9	110.83	0.00040	<	0.27708	acceptable	0.00391	<	1.30708	acceptable
8	96.17	0.00043	<	0.24043	acceptable	0.00351	<	1.03000	acceptable
7	81.5	0.00045	<	0.20375	acceptable	0.00307	<	0.78958	acceptable
6	66.83	0.00041	<	0.16708	acceptable	0.00263	<	0.58583	acceptable
5	53.5	0.00042	<	0.13375	acceptable	0.00222	<	0.41875	acceptable
4	43.5	0.00046	<	0.10875	acceptable	0.00179	<	0.28500	acceptable
3	33.5	0.00045	<	0.08375	acceptable	0.00133	<	0.17625	acceptable
2	23.5	0.00042	<	0.05875	acceptable	0.00088	<	0.09250	acceptable
1	13.5	0.00046	<	0.03375	acceptable	0.00046	<	0.03375	acceptable

Figures 31 & 32: Allowable seismic drifts in the North-South and East-West Directions

TORSION

Torsion for the building can result from a difference in the center of mass and the center of rigidity. The difference between the points is an eccentricity that the loads are applied at. The eccentricity multiplied by the force results in a moment on the building. As stated before the wind load cases 2 and 4 include eccentricities on the wind loads that create torsion on the building. The eccentricity for both these cases is 15 percent of the building's width. ASCE 7-05 describes torsion that is produced by accidental eccentricities for seismic loads.

OVERTURNING MOMENT

Overturning happens the moment created by the building's self weight does not offset lateral forces on the building. If the building's self weight does not compensate for the moment, the foundation can be designed to counteract the overturning moment. In the design of the foundation, friction from the soil can used to assist the foundation counteract the overturning moment.

Below are the overturning moments determined using the ETABS model. Critical story shears applied at the center of mass at each level were used to tabulate the moments at each level, and the moments were totaled to determine the building's overturning moment.

S	Seismic Overturning Moment									
Story	Height	Story	Overturning							
4.4	440.47									
11	140.17	11.87	0							
10	125.5	42.86	174							
9	110.83	86.01	803							
8	96.17	123.69	2064							
7	81.5	159.45	3878							
6	66.83	189.3	6217							
5	53.5	217.12	8741							
4	43.5	244.59	10912							
3	33.5	265.82	13358							
2	23.5	280.77	16016							
1	13.5	286.82	18824							
	Total Moment: 80987									

Figure 33: Seismic Overturning Moment

Philadelphia, PA

Wind Overturning Moment (X / N-S)				
Story	Height	Story Shear (k)	Overturning	
44	440.47	01.2	Noment (K-It)	
11	140.17	91.2	1//2	
10	125.5	169.6	9418	
9	110.83	256	19892	
8	96.17	339.2	31876	
7	81.5	419.2	46345	
6	66.83	491.2	62358	
5	53.5	548.8	79825	
4	43.5	595.2	94770	
3	33.5	638.4	109790	
2	23.5	678.4	127521	
1	13.5	718.4	144516	
		Total Moment:	728084	
W	ind Overtu	ırning Moment (Y / E-W)	
W	ind Overtu	Irning Moment (Y / E-W) Overturning	
W Story	ind Overtu Height	rrning Moment (Story Shear (k)	Y / E-W) Overturning Moment (k-ft)	
W Story 11	ind Overtu Height 140.17	Story Shear (k)	Y / E-W) Overturning Moment (k-ft) 4403	
Story	ind Overtu Height 140.17 125.5	Story Shear (k) 211.2 376	Y / E-W) Overturning Moment (k-ft) 4403 14471	
Story 11 10 9	ind Overtu Height 140.17 125.5 110.83	Story Shear (k) 211.2 376 577.6	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276	
W Story 11 10 9 8	ind Overtu Height 140.17 125.5 110.83 96.17	Story Shear (k) 211.2 376 577.6 771.2	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726	
W Story 11 10 9 8 7	ind Overtu Height 140.17 125.5 110.83 96.17 81.5	Story Shear (k) 211.2 376 577.6 771.2 956.8	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 45349	
W Story 11 10 9 8 7 6	ind Overtu Height 140.17 125.5 110.83 96.17 81.5 66.83	Story Shear (k) 211.2 376 577.6 771.2 956.8 1131.2	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 43726 45349 84201	
W Story 11 10 9 8 7 6 5	ind Overtu Height 140.17 125.5 110.83 96.17 81.5 66.83 53.5	Story Shear (k) 211.2 376 577.6 771.2 956.8 1131.2 1278.4	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 43726 45349 84201 102291	
W Story 11 10 9 8 7 6 5 4	ind Overtu Height 140.17 125.5 110.83 96.17 81.5 66.83 53.5 43.5	Story Shear (k) 211.2 376 577.6 771.2 956.8 1131.2 1278.4 1385.6	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 43726 45349 84201 84201 102291 121167	
W Story 11 10 9 8 7 6 5 4 3	ind Overtu Height 140.17 125.5 110.83 96.17 81.5 66.83 53.5 43.5 33.5	Story Shear (k) 211.2 376 577.6 771.2 956.8 1131.2 1278.4 1385.6 1486.4	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 43726 45349 84201 102291 102291 121167 142456	
W Story 11 10 9 8 7 6 5 4 3 2	ind Overtu Height 140.17 125.5 110.83 96.17 81.5 66.83 53.5 43.5 33.5 23.5	Story Shear (k) 211.2 376 577.6 771.2 956.8 1131.2 1278.4 1385.6 1486.4 1579.2	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 43726 43726 142456 164683	
W Story 11 10 9 8 7 6 5 4 3 2 1	ind Overtu Height 140.17 125.5 110.83 96.17 81.5 66.83 53.5 66.83 53.5 43.5 33.5 23.5 13.5	Story Shear (k) 211.2 376 577.6 771.2 956.8 1131.2 1278.4 1385.6 1486.4 1579.2 1667.2	Y / E-W) Overturning Moment (k-ft) 4403 14471 27276 43726 43726 43726 142456 164683 194045	

Figures 34 & 35: Wind Overturning Moment in N-S & E-W Directions

In result of the calculation of the moment resulting from the building's self weight it is found that there will be no uplift in the foundation. The building self weight compensates for the overturning moment caused by lateral forces. The calculations for dead load moments can be found in Appendix D.

Also, spot checks were done on two lateral braces located at the intersection of grid line A and 6. Both members were found to be an acceptable design.

CONCLUSION

The lateral forces including wind and seismic loads were calculated in technical report 1 and used in this report for the analysis of the lateral system. The controlling load combination was found to be: 1.2(Dead) + 1.6(Wind) + 1.0(Live) + 0.5(Roof Live)

The calculation of drifts included the unfactored wind loads for case 1 and the unfactored seismic loads. The controlling load combination was also used in the member spot checks. All the drift values were found to be less than the drift limitations stated in ASCE 7-05, which makes the drift displacements acceptable. The drift limitations used are: $\Delta_{wind} = H/400$ and $\Delta_{seismic} = 0.015h_{sx}$

The overturning moment was found not to cause any uplift in the foundation. The self weight of the building compensates for the overturning moment cause by lateral forces.

Member spot checks were perform on two HSS steel shape braces and two W14 steel shape columns where grid lines A and 6 intersect, and on the first and 5th floors. The design of the members was found to hold the controlling load combination, which means the design is acceptable.

APPENDIX A- EXISTING TYPICAL BAY AND DESIGN VALUES

			DI	ESIGN LOADS AND	FACTO	RS design code: internatio	onal building	CODE 2003 ED
LIVE LOAD DATA		SNOW LOAD DATA		WIND LOAD DATA		EARTHQUAKE DESIGN DATA		
FLOOR OR ROOF AREA	LOAD (psf)	ROOF AREA	LOAD (psf)	FACTOR	VALUE	FACTOR		VALUE
LABS / OFFICES	100	GROUND SNOW LOAD (Pg)	30	BASIC WIND SPEED (V3S) (MPH)	90	SEISMIC IMPORTANCE FACTOR (I E)		1.0
CORRIDORS, LOBBIES & EXITS	100	FLAT ROOF SNOW LOAD (Pr)	23	WIND IMPORTANCE (Iw)	1.0	SEISMIC USE GROUP		I
GARAGE	40	DRIFT	VARIES	OCCUPANCY CATEGORY	1	SPECTRAL RESPONSE ACCELERATION 0.2 SEC (S _S)		0.33
MECHANICAL EQUIP ROOMS	150			WIND EXPOSURE	В	SPECTRAL RESPONSE ACCELERATION 1.0 SEC (S1)		0.082
ROOF	30	FACTOR	VALUE	INTERNAL PRESSURE COEFFICIENT	±0.18	SITE CLASS		С
		SNOW EXPOSURE (C _e)	1.0	COMPONENTS AND CLADDING WIND PRESSURE (PSF)	*VARIES	DESIGN SPECTRAL RESPONSE COEFFICIENT (SDS)		0.27
		SNOW LOAD IMPORTANCE (IS)	1.0	* CALCULATED PRESSURES TO BE	DETERMINED	DESIGN SPECTRAL RESPONSE COEFFICIENT (SD1)		0.09
		THERMAL FACTOR (Ct)	1.0	BY COMPONENT AND CLADDING	PROVIDER.	SEISMIC DESIGN CATEGORY		В
LIVE LOAD REDUCTION APPLIED) TO:					ANALYSIS PROCEDURE - EQUIVALENT LATERAL FORCE		
COLUMNS						BASIC SEISMIC-FORCE-RESISTING SYSTEM	ORDINARY STE BRACED	EL CONCENTRIC
GIRDERS							Cs=0.0	21(R=3)
BEAMS						DESIGN BASE SHEAR (kips)		12
L Z-WAT SLABS								
SPECIAL LOADING:		SPECIAL SNOW CONSIDERATIONS:		SPECIAL WIND CONSIDERATIONS:		SPECIAL SEISMIC CONSIDERATIONS:		
			C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		SOVERNS ROOF DESIGN	5	GOVERNS LATERAL DESIGN		I GOVERNS LATERAL DESIGN		
L		11	$-\epsilon$		~~~	m		
						2		

Existing Typical Bay (6th Floor)

Philadelphia, PA

Typical Column Schedule

Philadelphia, PA

Zachary Yarnall

Braced Frame Schedule

ELEVATION AT LINE A

ELEVATION AT LINE F

APPENDIX B-WIND LOADS

						Zachary	Yarnall
+-M			CALCULATIO	N SHEET		PAGE	_ OF
		SUBJECT	Senior The	esis	_ Prepared By	Date	09/29/09
PROJECT No.	Method :	2 - Wind	Analysis		_ Reviewed By _	Date	
Yeloc.	ity Pres	sures, qe	and 9h				
• Fr	om ASCE	7-05 Fi	ig. 6 - 1				
I	Basic Win	d speed,	V = 90 mph /	40 m/s			
• Fre	om ASCE	7-05 Fi	g. 6-4				
,	Wind direc	tionality	factor, Kd =	0.85 (for	buildings?)	
• Fro	M ASCE	7-05 fig	g. 7-4				
	Importanc	e factor	, I = 1.1	(Category I	(7		
• Fre	om ASCE7.	-05 6.5.	6				
	Exposure	Category	B (locat.	ed in Urba	in area)		
• Ar	e all 5 c	onditions	of 6.5.7.)	met? No			
• Fre	om ASCE	7-05					
	Topograph	rie Facto	r , $K_{zt} = 1.0$	2			
• Fre	m ASCE-	7-05 Ta	ble 6-3 and	Table 6-2			
	Velocity F	pressure e	exposure coe	Aficients			
	$K_{z} = 1.1$ $K_{h} = 1.1$	0 ($Z_{g}=1$)	200, x = 7.0) Kz=:	$2.01\left(\frac{2}{2g}\right)^{\frac{2}{\alpha}}$	(sample Ca	(culation)
• Fro	M ASCE?	-05 Eq	. 6-15	¥	2.01 (1200)	1 = 1.10	
1	Velocity 7	pressure	at height	zand h (refer to s	pread s	heet)
	92 = 0.00	0256 Kz Kz+	Ka V ² I	(sample c	alculatio	and	
	= 0.00	256(1.10)(1	.0) (0.85) (90)2	(1.10)			
	= 21.	43					

ENGINEERS &	CONSULTANTS	CALCULATION SHEET	PAC	»E UF
	SUBJECT		Prepared By	Date
KOJECT No.	hal 2- N.	id Analy	Reviewed By	Date
Gust Effec	+ Factors, G	a and Gif		
· Building	natural f	requency, n. (ASCE 7-	05, C6.5.8, E	2. 6-17)
n, = 1	00/H = 10	0/147.5 = 0.68 (a	verage value?	
· Dampir	ng ratio, F	B (ASCE7-05, C6.58)		
β, = 1.	0% per I	50		
· Struct	ure Dimens	sions		
h= 14 B= 21 L= 18°	7.5' 2.5' (N/S) 1' (E/W	Elevation) Elevation)		
n. < 1	Hz			
· Ste	1 []	-1.1.		
$g_{R} = c$	v = 3.4	X101e		
9r = -	2ln(3600n)	+ 0.577 (Eq. 6 $\sqrt{2 ln(3600n)}$	-9)	
> .] Z ln (3600(0.68))	$) + \frac{0.577}{\sqrt{2 \ln (3600(6.65))}} = 4.09$	7	
Ž= 0.	6h = 0.6 (147	$(.5) = 88.5^{4} > 30^{4} = 2 min$	(from ASCET-0	5 Fig. 6-2
$T_{\overline{z}} = c$	$\left(\frac{33}{2}\right)^{6} = 0.30$	$\left(\frac{33}{885}\right)^{5} = 0.255$ (c = 0	.30 from ASCET	1-05 Fig. 6-2
L== 1	$\left(\frac{\overline{z}}{\overline{33}}\right)^{\overline{c}} = 320\left(\frac{5}{\overline{33}}\right)^{\overline{c}}$	$\frac{1}{33} + \frac{1}{3} = 444.6$ (l= 320	from ASLE7-05	Fig. 6-2)
Q = \	$1 + 0.63 \left(\frac{B+h}{L_{\overline{2}}}\right)$) ^{0.65} (Eq. 6-6)		
Qn/s =	1 + 0.63 (2	1 62.5 + 147.5 0.63		

+-M	LULKEY CALCULATION SH	EET P/	AGE OF
	SUBJECT	Prepared By	Date
ROJECT No		Reviewed By	Date
Gust	Effect Factors, G and Gig - contin	ued	
	M = / / / / / / / / / / / / / / / / / /		
	$Q \in M = \sqrt{\frac{189 + 147.5}{1 + 0.63}} = 0.0$	07	
	11.6		
• B	asic wind speed. V		
	$\overline{V}_{-} = \overline{L}/\overline{Z} Z_{-} /88 (E_{-} L) (T_{-})$	- 0.45 Z= - Pro 15	ELAF F.
	$V_{2} = O\left(\frac{2}{33}\right) V\left(\frac{5}{60}\right) = \left(Cq, O, H\right) (0)$	- 01 - 1 - 4 - FLOM AS	eros rig.
	= (045) (88.5) 4 (0.1 / 88) 76.01		
	$(0, 13) \left(\frac{30.5}{33} \right) (90) \left(\frac{30}{60} \right) = 10.01$		
	N = n 5 010(4444) 200 /	- (-10)	
	$V_1 = \frac{1}{V_2} = \frac{0.86(114.6)}{76.01} = 3.90$ (4)	-9.6 12)	
	R - 747N 747/290		
	$N = \frac{1}{(1 + 10.3 \text{ M}_1)^{5/3}} = \frac{1}{(1 + 10.3 (3.98))^{5/3}} = 0.0$	59	
	$P_{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{2} = \frac{1}{1} = \frac{1}{1$	-2(6.07) - 0151	
	$\eta = \eta = 2\eta^2 \left(\frac{1}{2} \right)^2 = 6.07 = Z(6.03^2)$		
	$\eta = 4.6 n, \frac{\alpha}{\sqrt{2}} = 4.6(0.68) \frac{147.5}{76.01} = 6.0$	7	
1	$R_{B} = \frac{1}{10.8} - \frac{1}{2/16.8^{2}} \left(1 - e^{-2(10.8)}\right) = 0.088$	(N/S)	
	$m = 44n B = 46(048) \frac{262.5}{5} = 10.80$		
	76.01		
	$k_{B_z} = \frac{1}{7.78} - \frac{1}{2(7.78)^2} (1 - e^{2(7.76)}) = 0.12$	(E/W)	
	$M = 4.6n, \frac{B}{2} = 4.6(0.68) \frac{139}{770} = 7.78$		
	Viz Incon		
	$k_{L} = \frac{1}{3617} - \frac{1}{2(26.77)} \left(1 - e^{-2(36.77)}\right) = 0.027$	(N/s)	
	M-154n E - 1511/010 262.5 - 20	177	
	Va 13.7 (0.08) 76.01 - 38.		
	$l = \frac{1}{1 - 1} \left(1 - \frac{-2(26.047)}{1 - 0.029} \right) = 0.029$	(Ehr)	
	12 26.04 2(26.019 1 2)-0.038		
	$M = 15.4 N_1 = 15.4 (0.68) \frac{189}{7601} = 26.04$		

ENGIN	EERS & CONSULTANTS CALCULATION SHEET		PAGE OF
	SUBJECT	_ Prepared By	Date
PROJECT No.		_Reviewed By	Date
Buildin	1. Main Wind - force Resisting Systems		
	The health are an low l		
	The building is enclosed		
	The building has a parapet		
	Velocity Pressure 90=21.41 mph		
	combined net pressure coefficient, GCpn		
	G.C.pn = + 1.5 Windward		
	$C_{0} = -10$ last last		
	Gilph- in reevalue		~
•	Combined net design pressure on the parapet		
	$B_{2} = 9_{2} G(2)$ (F4 6-20)		
	TP CP CCph CCC-		
	= (21.41)(1.5) = 32.12 (windward) = (21.41)(-1.0) = -21.41 (logitherit)		
	(contract zona (rechara)		
0 -	The building is not rigid		
	Determine velocity pressure & for windward 1	alls along	the height
	of the building and qu for leeward walls.	side walls	; and roof
0	Pressure coefficient Co for the wells and	conf (Fi	a 6-6 05 6-8)
	$L = \frac{262.5}{189} = 1.39 (N/S) = 5 ($	P= -0.5	$(7_{B} = 0 - 1)$
	= 189 = 0.72 (E/W) => C	p = -0.42	(interpolated)
	262.5		71/8=0-1 1/8=2
	C_{P} $(N/s) (E/w)$		(-(- ,
	Windward wall 0.8 0.8		
	Leeward wall 0.5 -0.42		
	Santa Andrea		
	All a set a 21. I have a set		

	CONSULTANTS C	CALCULATION SHEET	P	AGE OF
CHENT	SUBJECT		Prepared By	Date
PROJECT No.			Reviewed By	Date
Building, 1	Main Wind -	Force Resisting Sys	teurs - Continu	red
· Deter	rmine design	n wind pressures	1 Pz	
Pz =	qzGzCp (E	Eq. 6-19)		
Win	dward samp	le calculation (N/	(5)	
Pz	= 21.41(0.87	6)(0.8) = 15.0 Pof		
12				

APPENDIX C-SEISMIC LOADS

ENGINEERS &	& CONSULTANTS	CALCOLA	T -		
	SUBJECT	Denior	Thesis	Prepared By	Date 09/2
ROJECT No. Je	tismic Load	ls		Reviewed By	Date
Consider	ration of S	eismic D	resign Required	uents	
• Not	a detach	ed one-	or two-fami	ily dwelling.	
·Not	an agricul	tural st	orage struct	use intend	
1	for inciden-	tal hun	ran occupar	ncy	
· Drue	s the strue	tuce cer	suice specia	1 considerat	ion
wit	h respect.	to respo	Ase charact	eristics and	d
evir	onment the	it are no	ot addressed	in Chapter	15 2
and	for which	n other	regulations	provide cri	recia.
No					
" Seis	INTO CRANTCO	mate or	f AS(=7-05 r	must be mas	ideced
		-ments o	110001001		
Seismic	Ground	Motion	lalues		
· Det.	ermine Sco	inds, f	on Figs. 22-1	through 22	-14
	Site Class	fication	C	0	1.00
	Dersmic Des	ign Cate	gory D (fo	om Structur	al Flans)
C	Decupancy Cate	yory II =	>I=1.0		
	9-03	(Com	E 22-1) >	0.15	
	05 2 0.0	GIORE	Fig. CC	No	0
	5, = 0.06	(from	fig. 22-2) >	0.04	
° 75	the struct	ice seish	rically isolate	d or does it	
hav	e damping	systems	on site with	S. 20.67 1	Jo
o Doto	cimina Shire	and SM	by Fac 14.	-1 and 11 4.7	
2010	Attocine State	ana si		1 0000 11.1-2	_
	SMS = FaS	s = (1.2)(0.5)	(3) = 0.36 Fa=	1.2 (from 1	fig. 11.4-1)
	SMI = FVS	= (1.7)(0.06)= 0.102 Fv=	1.7 (from F	ig 11.4-2)
e N. L			En Iluna		0
Dete	cimine obs	and Dbi	09 095. 11.9-3	and 11.7-9	
	SDS = 32 SI	MS = 23 (0.	36) = 0,24		

ENGINEERS	& CONSULTANTS		
	SUBJECT	Prepared By	Date
PROJECT No.		Reviewed By	Date
Permit	ted Analytical Procedur	es	
• F		maraluca	
·Le	juivalent lateral souce	procedure	
	response modification co	efficient, R=3	
		- 10	
	importance factor, s	1.0	
e	approximate fundamental	period of the struct	uce, Ta
	$T_{a} \in C_{a}h^{\times} = c_{a}c_{a}(1)$	44.5)0.15 = 1.27	
	1a - Of 1in 0.05 C	11	
	Ct = 0.03		
	x = 0.75	lable 12.8-21	
	Tr= 6 (from Fig. 2	2-15) 7 Ta	
Ī	Date suring (bu E.	17 8-3 and 12.8-2	
	service as an a	, , , , , , , , , , , , , , , , , , , ,	
	$C_s = \frac{DD_1}{R} + \frac{DD_s}{R}$	V	
	$T(\Xi)$ (I)		
	SD. = 0.068 =	0.0178	
	$\tau \left(\frac{R}{2}\right) 1.27 \left(\frac{3}{1}\right)$		
	Sps 0,24 0.0	28	
	$\left(\frac{R}{1}\right)$ 3		
	Data china all'atime s	attender i windet 1. 1-	aunadance
	with 12.7.2	erspecie meight with	accornance
	VI US OTO KIDS		1 1 1
	W= 40, 810 1	(calculation on exc	21 Sheel)
	$V = C_{S} W = 0.0178$	40,378) = 719	· · · · · · ·
	TIST - K	1 (10.82)	
	1 < 0.0 sec 00 K-	(12.0.2)	

ENGINEEF	RS & CONSULTANTS		
	SUBJECT	Prepared By	Date
PROJECT NO		Reviewed by	Date
	Fill 14 Door	luce and	
	Equivalent lateral force p	rocedure - continu	reci
	Determine lateral seis	mic force fx at	evelx
	by Eqs. 12.8-11 and 12	.0-12	
	F		
	$f_{x} = \frac{W_{x}h_{x}}{n} V \qquad ($	Calculations in E.	xcel Sheet
	ZWini		
	1 140278	(WIDE) - 595575	E
	(=1) - (10,510)(141,5)= 0,100,10	0
	betermine seismic design	story shear . 1x	
	04 -1		
	V = SE		
	ix CF		
	Note in structure	and the second Ma	
	Determine inherent torsi	onal movement, rit	
	Determine accidental torsi	onal moment, Mta	
	Determine the deflection	S at lovals x	
	by Eq. 12.8-15	Je ar revers a	
	, c		
	Sx = Cd Sxe		
	I		

APPENDIX D-OVERTURNING AND SPOT CHECKS

Philadelphia, PA

Philadelphia, PA

